

# 聚烯烴系列潛力產品座談會

# Linear α-olefin技術發展及潛力應用

時國誠

工業技術研究院材料與化工研究所

中華民國 106年 02 月 24 日

#### **Background**

- Linear Alpha Olefins (LAOs, even-carbon numbered olefins ranging from C4 to C30+ carbon atoms.
- The main applications for the LAOs are as co-monomers for polyethylene production, for oxo-alcohols used in detergent and plasticizers and for the production of poly-alpha olefins for the synthetic lubricant pool.
- The total world production for LAOs accounted for 3.5 Mt/y in 2012 for a total capacity of 4.3 Mt/y (with the exception of 1-butene production from refinery streams). The global annual average growth for LAOs is estimated at 3.3% (2012-2018) but depends largely on the region with a higher growth in developing countries.
- Globally, co-monomer grade LAO consumption (C4-C8) is the largest and fastest-growing application, particularly for the production of linear low-density polyethylene resins (LLDPE).



### LAOs by ethylene oligomerization processes

#### full-range processes-technology and market survey

| Company (industrial) | Type of catalyst                                     | Typical LAO<br>distribution (wt. %)                                                                   | World capacity<br>(2012, kt/y) | Announced new capacities (> 2012, kt/y) |
|----------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|
| CPChem               | AlEt₃<br>(1 step)                                    | $C_{4}$ - $C_{10}$ = 54 (49) (a)<br>$C_{12}$ - $C_{14}$ = 18 (18)<br>$C_{16}$ - $C_{20+}$ = 28 (33)   | 1053                           | 140                                     |
| Ineos                | AlEt₃<br>(2 steps)                                   | $C_{4}$ - $C_{10}$ = 70-77<br>$C_{12}$ - $C_{14}$ = 21-28<br>$C_{16}$ - $C_{20+}$ = 2                 | 565                            | 375                                     |
| Shell                | Ni/P-O<br>(biphasic)                                 | $C_4$ - $C_{10}$ = 54 (32) (a),(b)<br>$C_{12}$ - $C_{14}$ = 18 (16)<br>$C_{16}$ - $C_{20+}$ = 28 (52) | 1251                           | 650                                     |
| Idemitsu             | Zr/L/AIR <sub>3-x</sub> Cl <sub>x</sub><br>(solvent) | Non disclosed                                                                                         | 60                             | 330                                     |
| SABIC/Linde          | Zr/L/AlR <sub>3-x</sub> Cl <sub>x</sub><br>(solvent) | $C_4$ - $C_{10}$ = 82 (26) <sup>(a)</sup><br>$C_{12}$ - $C_{20+}$ = 18 (74)                           | 250                            | 37                                      |

<sup>(</sup>a) Typical distribution, in brackets possible flexibility (b) possible distribution of LAOs after oligomerization and before isomerization and metathesis processing

Source: IHS Chemicals, Chemical Economies Handbook:Linear alpha-Oiefins, August 2013.



### **Zieglar processes-CPChem**

#### Growth

$$AI(C_2H_5)_3$$
 +  $nC_2H_4$   $\longrightarrow$   $AI \stackrel{CH_2CH_2R}{\longleftarrow} CH_2CH_2R'$   $CH_2CH_2R''$ 

triethylaluminum ethylene growth product

#### Displacement

$$AI \stackrel{\mathsf{CH}_2\mathsf{CH}_2\mathsf{R}}{\underset{\mathsf{CH}_2\mathsf{CH}_2\mathsf{R}'}{\mathsf{CH}_2\mathsf{CH}_2\mathsf{R}'}} + 3 \, \mathsf{C}_2\mathsf{H}_4 \qquad \qquad \blacktriangleright \qquad \mathsf{AI}(\mathsf{C}_2\mathsf{H}_5)_3 \qquad + \begin{array}{c} \mathsf{RCH} = \mathsf{CH}_2 \\ \mathsf{R'CH} = \mathsf{CH}_2 \\ \mathsf{R''CH} = \mathsf{CH}_2 \end{array}$$

growth product ethylene triethylaluminum alpha-olefins



## **SHOP** processes-CPChem





#### LAOs by ethylene oligomerization processes

On purpose processes<sup>(a)</sup> for the selective production of 1-butene, 1-hexene and 1-octane

| LAO produced      | Process/company   | Catalyst type                    | Capacity (kt/y) (b) |
|-------------------|-------------------|----------------------------------|---------------------|
| 1-Butene          | AlphaButol /Axens | Ti/AIR <sub>3</sub>              | 708                 |
| 1-Hexene          | CPChem            | Cr proprietary/ AIR <sub>3</sub> | 397                 |
| 1-Hexene          | AlphaHexol/Axens  | Cr proprietary /AIR₃             | 50 <sup>(c)</sup>   |
| 1-Hexene          | Mitsui            | Ti proprietary /"MAO"            | 30                  |
| 1-Octene/1-Hexene | Sasol             | Cr proprietary/ "MAO"            | 100                 |

<sup>(</sup>a) only commercialized processes are cited here (b) include planned capacities (c) total capacity for 2 units AlphaButol et AlphaHexol

Source: IHS Chemicals, Chemical Economies Handbook:Linear alpha-Oiefins, August 2013.

The first AlphaHexol unit was commercialized in 2012.



#### AlphaHexol/Axens

140°C; 435psi



#### Cr-based catalyst/Mg-based cocatalyst Aluminum salt activator

$$R^2$$
 $R^3$ 
 $R^4$ 
 $R^5$ 

Ligand precursor

- The reaction yield of C6 olefins is over 85% with some C4 as well as higher carbon number olefins as by-products.
- The selectivity of the alpha-olefins in the C6 fraction is very high, at over 99%
- The first AlphaHexol unit was commercialized in 2012.
- PEP Review 2012-11

# Ethylene trimerization processes-Chevron Phillips

Cr(III) 2-ethylhexanoate/2,5-dimethylpyrrole Triethylaluminum/diethylaluminum chloride



- LP (CPChem) reported the use of pyrrolide ligand in 1991.
- CPChem implemented this technology through two joint ventures with Qatar Chemical Company Ltd. in Mesaieed (Qatar) and Saudi Polymers Company in Al Jubail (Saudi Arabia), producing 47000 t/y and 100000 t/y, respectively. In 2014, CPChem also announced the start-up of a 1-hexene production unit of 250000 t/y in Baytown, Texas (USA).



## **Ethylene Trimerization Processes-Mitsui**



% wt of 1-hexene in the products distribution

#### 聚烯烴新料源開發(C6/C8 α-olefin)



- •長鏈端烯烴(α-olefin)中1-己烯和1-辛烯,是生產LLDPE和HDPE中重要的共聚單體,為我國斷鏈原料。使用長鏈端烯烴的中游產品C6、C8-LLDPE具有拉伸強度高、抗衝擊和抗撕裂等優點,耐環境應力開裂性能可達5000h以上,其特別適合於生產包裝膜和農用薄膜,國內尚未生產此規格產品,依賴進口。
- •長鏈端烯烴也是製造聚烯烴彈性體(POE)以及合成潤滑油等產品的重要原料。