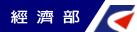


103年石化產業高值化應用推動與輔導 -石化產品高值化研發聯盟籌組與技術輔導

功能性PP-高熔融強度改質與應用 暨高性能橡膠合成/改質技術平台

成果報告

主辦單位:


經濟部工業局

執行單位: 工業技術研究院

報告人: 陳建明/工研院材化所

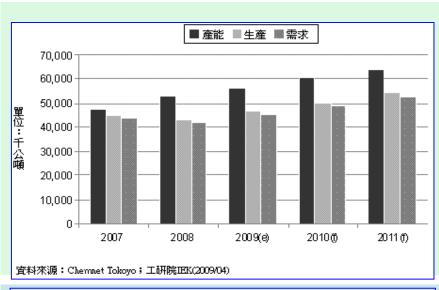
中華民國103年11月17日

簡報大綱

壹、計畫背景與工作重點

貳、103年重要成果說明

參、結論與建議


壹、計畫背景與工作重點

國際技術與產品狀況

➡石化高值化藍圖項目:功能性PP-高熔融強度改質與應用

- ▶2011年全球PP產量達54,240千公噸。
- ▶未來3年全球PP產能利用率將從82% 、83%、86%逐年成長。

Physical	Naminal Value Unit	Test Method
Density	1.04 g/cm ³	ISO 1183/A
Melt Mass-Flow Rate(MFR)(230℃/2.16kg)	28 g/10 min	ISO 1133
Mechanical	Naminal Value Unit	Test Method
Tensile Stress(Yield,23℃)	10.9 MPa	ISO 527-2/50
Tensile Strain(Break,23℃)	> 80%	ISO 527-2/50
Flexural Modulus ² (23°C)	1750 MPa	ISO 178
Flexural Strength(23°C)	31.0 MPa	ISO 178
Impact	Naminal Value Unit	Test Method
Notched izod impact Strength		ISO 180/1A
-30℃	>2.00 kj/m²	
23℃	>20.0 kj/m ²	
Hardness	Naminal Value Unit	Test Method
Rockwell Hardness(R-Scale)	>76	ISO 2039-2
Thermal	Naminal Value Unit	Test Method
Heat Deflection Temperature		ISO 75-2/A
1.8 MPa, Unannealed	57.0℃	

➡國內外技術狀況說明:

- ▶國內業界目前並無相關高性能商品 ,以進口材料為主,尚未發展高性能 聚烯材料自有技術。
- ▶國際先進研發團隊包括日本出光、 Dow Automobile、Sabic plastics、 Dupont、Bayer等投入研製olefin奈米 複材。
- □ 我國PP近年開工率與出口量均逐漸 下滑,出口競爭力下降。

高熔融強度PP之全球市場分析

⇒"Polymeric foams"市場預估(汽車、電子、建材、運輸包裝、安全防護)

- 2012 polyolefin foam 953.51×1000公噸
- 2012 polystyrene foam 4938.85×1000 公噸
- 2012 polyurethane foam 11704.11×1000公噸

589萬公噸(>NT4仟億/年)

From Global industry analysts,Inc

PP(50元/kg)⇒ polyolefin foam (200元/kg)

PP

• 輕量:節省材料及減輕重量-省油

· 結構強度:high strength/weight ratio-安全

• 能量吸收:孔隙結構吸收能量

可回收:容易經由再生過程回收應用

高強度聚烯改質與應用平台技術重要性與重點工作

⇒計畫重要性

- •國內聚烯材料產值龐大,但主要生產大廠將營業重點放在成本管控與產品銷售。
- •聚烯相關合成/應用技術落後歐美大廠,國產材料侷限於毛利率較低之基礎民生用品。

⇒技術應用推動平台-支鏈化PP材料技術聯盟評估研究

103年聯盟輔導規劃

功能性PP-高熔融強度改質與應用石化高值化聯盟

- ➡聯盟推動原則:
- ■開發項目符合傳統產業特色高值化(高值化藍圖項目)
- ■聯盟廠商推動以具中堅企業潛力廠商為主
- ■串聯上中下游廠商以完整推動產業鏈符合製造業服務化

高值化 PP(40元/kg) ⇒ 高功能輕量化(200元/kg)

下游

聯盟 廠商

樹脂/無機材廠

上游

中游

複合材料廠

產品應用廠

應用產業

技術 核心

有機無機 化學改質

型熊控制 機能複材

- •模具設計
- •產品設計
- 製程調控
- •產品驗證

- 電子電器
- → 民生運動
- → 節能運輸

高強度包裝

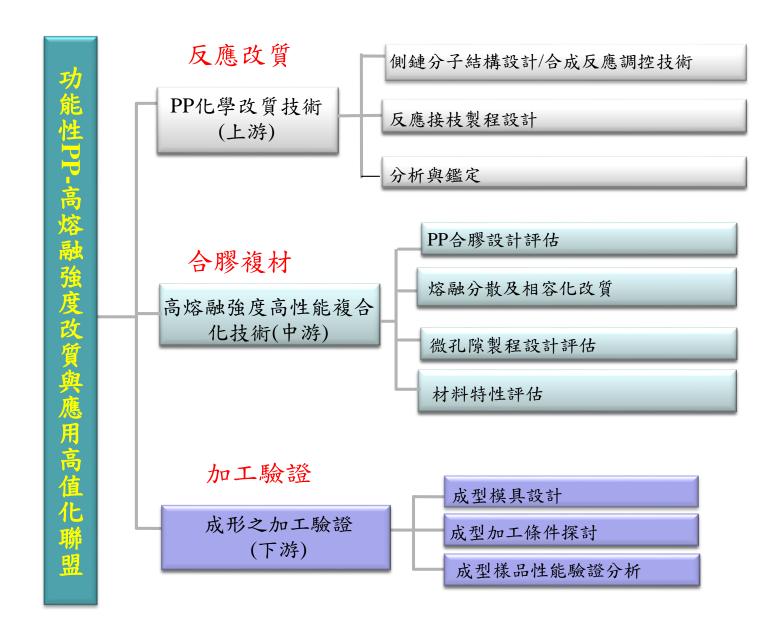
技術 內容

- 奈米無機材改質
- 極性長鏈反應
- 結晶型態控制
- 機能性材料設計系統
- 型態設計與控制
- 熔融改質分散製程
- 材料/製品創新應用
- 微孔結構設計
- 加工流變控制

單位 連結

材料廠

加工廠


應用廠

工研院材化所

高熔融強度改質與應用石化高值化聯盟整體計畫架構

計畫目標

●高熔融強度改質與應用技術分為反應、複材與驗證三項說明

上游段(反應改質)

以反應改質技術導入 支鏈單體方式來完成 PP枝鏈化技術開發

中游段(合膠複材)

以高分散的熔融混練 方式來完成合膠複合 材料改質與微孔隙化 製程技術

下游段(加工驗證)

微孔隙複合材料成型加工 技術之下游雛形產品驗證 評估

技術規格

- ■長碳鏈單體之碳鏈長 度≧10個碳
- ■長碳鏈單體之接枝率 ≥ 1.2 wt%

熔融黏度

- MI (230°C/2.16kg) ≤ 5 g/10min
- ■反應改質製程連續改 質速率 > 6kg/hr

技術規格

- ■透過微孔隙化製程, 將PP材料輕量化,使 $材料密度<math>\leq 0.03 \text{ g/cm}^3$
- ■支鏈PP之發泡倍率>50 倍
- ■微孔隙化PP之孔隙尺 寸<50 μm
- ■微孔隙化PP之耐熱性 維持,熔點Tm>120℃

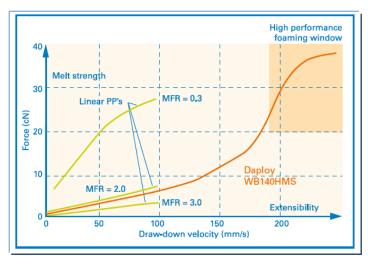
技術規格

- ■雛型品密度<0.05 g/cm3
- ■雛型品壓縮強度 Compressive strength >10 psi
- 離型品 壓縮永久變型率 Compression set <15%
- ■雛型品Tensile strength > 44 psi

貳、103年重要成果說明

PP之比較說明

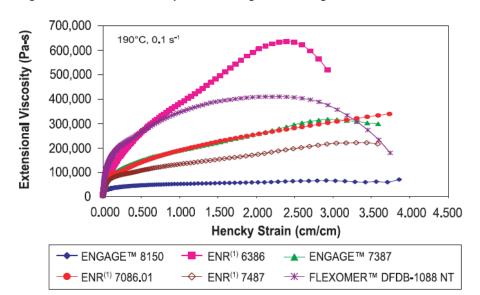
	High melt strength-PP
傳統PP	韌性差、熔融態強度低,其熱成型性、可發泡性能很差,大大限制了其在熱成型和發泡材料領域使用;原因是具有柔軟的長鏈大分子結構和較高的結晶傾向,其軟化點與熔點很接近
Borealis(Dapoly)	在PP與特殊過氧化物存在的radical-driven 反應中,以新穎的方式將反應單體接枝在 PP上
Montell (現在稱Bassell)	是以電子東照射(Electron beam irradiation) 製程經由自由基反應(radical reaction)導入 長支鏈
Dow Chemical	是以特殊的觸媒與製程開發出自有的high melt strength PP(inspire)



商業生產公認效果最佳的HMS-PP

Borealis生產之Daploy WB140 HMS材料,可在高拉伸速度時仍保有高熔融強度

Property	Unit	WB135HMS	WB140HMS	WB260HMS	Method
MFR 230/2.16	g/10 min	2.4	2.1	2.4	ISO 1133
Melt Strength	cN	32	36	27	Borealis test method
Melting Temperature	°C	163	163	146	ISO 11357
Crystallisation temperature	°C	128	127	113	ISO 11357
Flexural modulus	MPa	1,900	1,900	850	ISO 178
Tensile modulus	MPa	2,000	2000	900	ISO 527-2
Elongation at break	%	10	10	520	ISO 527-2
Heat deflection temp. A	°C	60	60	50	ISO 75-2
Heat deflection temp. B	°C	110	110	70	ISO 75-2
Vicat A	°C	155	155	130	ISO 306
Charpy impact str. notched +23°C	kJ/m²	4	3	8	ISO 179/1eA
Charpy impact str. notched -20°C	kJ/m²	1	1	1	ISO 179/1eA


INSITE™ technology→high melt strength polyolfin elastomer

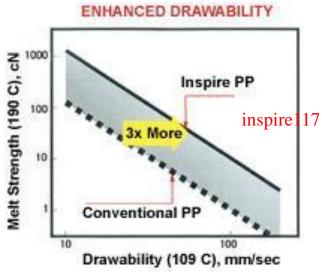


Table 1: Typical Properties of High Melt Strength Resins(1)

	ENR ⁽²⁾ 6386	ENGAGE™ 7387	ENR ⁽²⁾ 7487	ENR [®] 7086.01	ENGAGE™ 8150	FLEXOMER™ DFDB-1088 NT
Melt Index (2.16 kg @ 190°C), dg/min	<0.5	<0.5	<0.5	<0.5	0.5	0.1
Density, g/cm³, ASTM D 792	0.875	0.870	0.860	0.901	0.868	0.884
Hardness, Shore A, ASTM D 2240	75	66	58	90	70	83
Ultimate Tensile Strength, MPa, ASTM D 638	4.5	9.1	2.4	23.3	9.5	5
DSC, Melting Peak, °C	55	50	37	95	55	114
DSC, Tc Peak, °C	45	35	17	79	41	NM
DSC, Glass Transition Temp., °C	-41	-52	-57	-33	-52	-49

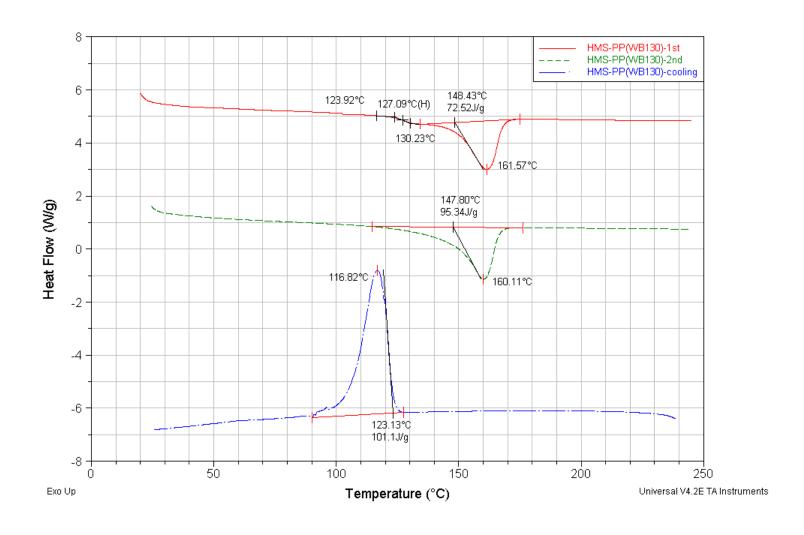
Figure 3: Extensional Viscosity of Various High Melt Strength Resins

⇒Japan polypropylene corporation(JPP)利用反應聚合技術開發出newfoamer resin,屬high melt strength PP,可用於擠出發泡非交聯型聚丙烯,連續擠出發泡比重可達0.28,利用JPP公司的核心技術:metallocene-based Reactor-PP,主要應用領域於食品容器、搬運用托盤、文具夾等。

newfoamer PP與傳統PP發泡效果比較

		FTS3000	Conventional Block PP
Thickness	mm	1.5	1.0
Density	g/cc	0.28	0.28
Expansion Ratio	-	3.2	3.2
Open Cell Ratio	Vol%	9	52
Closed Cell Ratio	Vol%	91	48
1		Uniform and Closed Cell	Non-Uniform
	4	Structure	Cell Structure

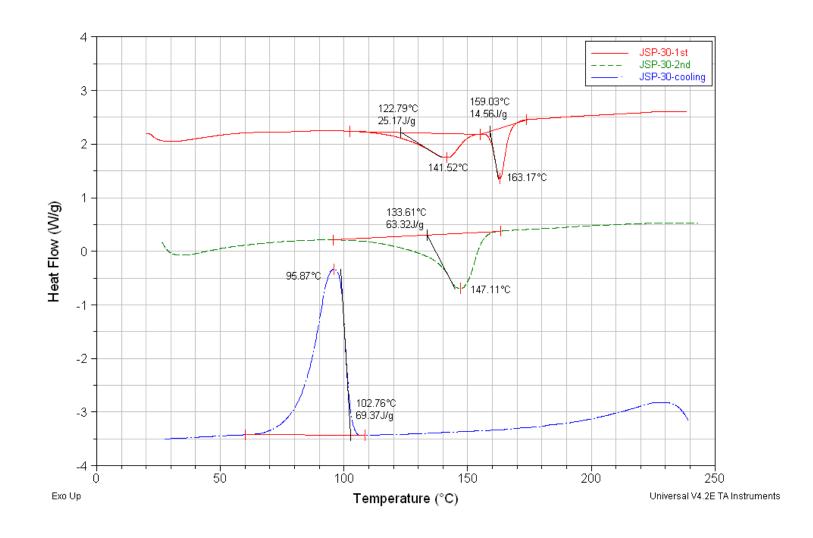
⇒韓國Lotte chemical開發出high melt strength PP,可用於發泡模板材(SMS系列),另外也開發自有的EPP發泡,發泡倍率30倍



Grade	MI (=/10====)	FM (lenf/amil)	23°C Izod	HDT	Tc/Tm (°C)	应用范围	
SMS-514	(g/10min.)	(kgf/cm²) 22,000	(kg -cm/cm)	130	166/130	热加工成型	,
SMS-514F	2.4	19,000	10	130	166/130	发泡	
SMS-733W	1.8	17,000	13	127	165/127	电线外皮	
XMS-573B	4.0	12,300	9	120	163/124	泡沫板	

進口商品熱性質分析

HMS-PP(WB130)-DSC



本計畫開發材料熱性質分析

JSP-30-DSC

PP支鏈接枝-實驗設計

起始劑種類	LCB-PP-1	LCB-PP-2	LCB-PP-3	PPUA
PP-6331F	100	100	100	
6733				100
Peroxide A1	0.4			0.25
Peroxide A2			0.2	
Peroxide A3		0.4	0.2	
comonomer	0.4	0.4	0.4	0.75
LCB-1	2	2	2	10
加工溫度(℃)	190	190	190	190
轉速	200	200	200	200
Grafted(%)	1.8	1.4	1.7	2
MI(g/10min)	21	114	150	2.8

[⇒]選用結合高/低溫起始劑之LCB-PP-1樣品可達到1.8wt%之長鏈接枝其流動性可維持在21 g/10min(改質前流動性14 g/10min)

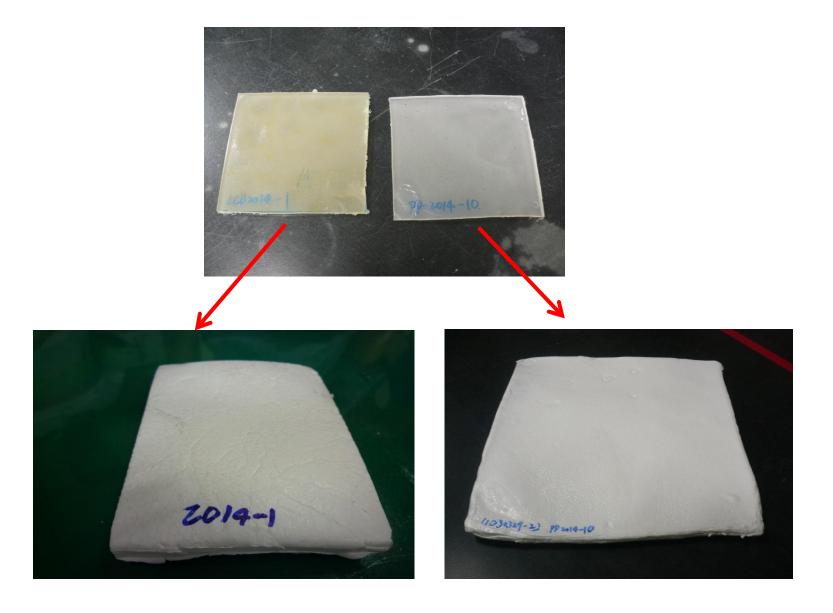
[⇒]本實驗使用較低流動性PP進行改質,其MI可維持在2.8 g/10min

PP支鏈接枝-實驗與發泡評估

編 號	PP(6733)	LCBPP2014-1	LCBPP2014-10
PP(6733)	100	100	100
Peroxide A4		0.4	0.4
Comonomer-1			6
Comonomer-2		1.5	
LCB-2		2	5
Elongation %		20	195
Tensile strength(kg/cm ²	E)	326	288
發泡後 Elongation %		17	38
發泡後 Tensile strength (kg/cm²)		38	11
發泡成品比重	0.0402	0.0271	0.0294

PP支鏈接枝-實驗與發泡評估-2

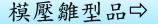
編	號	1030513-1	1030513-2	1030513-3	1030513-4
PI		100	100	100	100
起始劑-1	l(高溫)	g) 0.4 0.4		0.4	
起始劑-1	l(低溫)		0.4		0.4
交連助	7劑-1	0.4	0.4	0.4	0.4
LCE	B-1	2	2		
LCE	B-2			2	2
加工注	温度	210	210	210	210
發泡上	七重	0.030	0.017	0.023	0.028

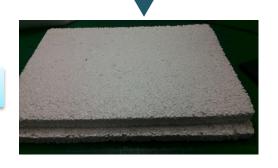


PP支鏈接枝-平板批次發泡評估

PP支鏈接枝-粒子批次發泡評估

PP原始比重=0.9


V


⇔批次超臨界CO₂發泡

改質PP發泡結果⇨

企發泡倍率=53;比重=0.0170

壓縮強度Compressive strength =24.2psi

壓縮永久變型率 Compression set =12.42%

實驗室樣品成型製程

第一次無法成型

第二次成型黏結效果 不佳

第三次成型黏結 OK

EPP雜型樣品

運動用安全頭盔雛型品組裝

產品應用

Ski Sports Helmet

滑雪板運動頭盔

高級自行車安全頭盔

球類運動頭盔

GLOSS COLORS 運動用安全頭盔

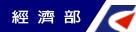
設備與實驗重點說明

技術輔導照片

- 本計畫以材化所建立之超長長徑比 (L/D=60)雙軸押出系統搭配選用之長 支鏈單體,來進行材料之高熔融強度 改質。
- •改質完成後之HMS-PP則以材化所專 利裝置之超臨界發泡系統進行孔隙化 探討。

- •雙軸押出系統搭配液態定量pump, 注入選用之支鏈單體,可達成改質押 出量7kg/hr。
- 動型品模具製作組裝完成,可用於評估微孔隙粒子成。

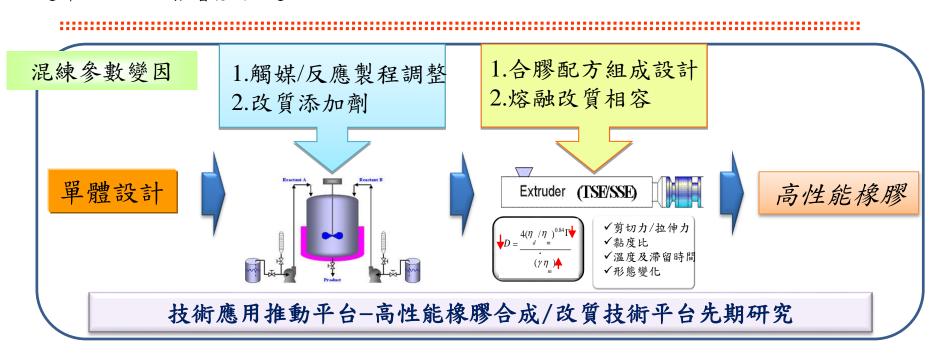
整體達成情形說明



開發項目	技術目標	技術規格	達成情形
支鏈化合成	以反應押出技術 導入支鏈共單體 方式來完成PP官 能化技術開發		 碳鏈單體之碳鏈長度=18~22個碳 碳鏈單體之接枝率=1.4~2wt% 熔融黏度MI (230℃/2.16kg) =2.8 g/10min 改質製程小量試產速率 =7kg/hr
微孔隙化	協助廠商建立PP 微孔隙化製程, 得到可連續穩定 小量之微孔隙化 PP	- 一名グイルプライルアピン イルプラス・ハーくコリー 11111	 透過微孔隙化製程,將PP材料輕量化,使材料密度=0.017g/cm³ 支鏈PP之發泡倍率=53倍 微孔隙化PP之孔隙尺寸=18.5~33.5μm 微孔隙化PP之耐熱性維持,熔點Tm=165℃
成形與性能驗證	以微孔隙化PP膠 粒進行成型技術 之開發,以完成 聚烯輕量化材料 的雛形產品驗證 評估	 雛型品密度<0.05 g/cm³ 雛型品壓縮強度Compressive strength >10 psi 雛型品 壓縮永久變型率Compression set <15% 雛型品Tensile strength > 44 psi 	 维型品密度=0.03 g/cm³ 维型品壓縮強度Compressive strength =24.2 psi 维型品 壓縮永久變型率Compression set=12.42% 维型品Tensile strength 58.8psi

參、結論與建議

- •本聯盟計畫透過上游接枝改質確實可以提升PP之熔融強度, 接枝率可達1.4~2%。
- •流動性的控制主要在PP原料端的選用決定。
- 不同支鏈改質之發泡體之微結構解析,其孔隙平均尺寸在 18.5~33.5μm之間。
- •未改質前之PP發泡倍率約在20倍,經由接枝改質後可達53 倍。
- 改質PP經孔隙化以模具成形高性能安全帽載具雛型品,目前可順利成型,但結合強度略低於進口高價商品,建議後續可持續研提相關研發計畫,更提升成型接著性,以利量產化推動。



技術平台建構-高性能橡膠合成/改質技術平台

計畫背景與依據

- ⇒熱塑性TPU橡膠彈性體屬綠色環保材,具優異特性如高強度、韌性、耐磨與極佳生物相容性。2011年全球市場需求約39萬噸,預估至2014年將達49萬噸,年複合成長率約為7.7%。聚酯型TPU雖具高強度但易水解,且因具強氫鍵,物理發泡製程時間長,量產性不佳。
- □國內業者應於上游原料或中間相關產品找尋機會及切入點,如透過高性能橡膠合成/改質技術平台,以建立差異化/獨特性等特色之石化高分子產業價值鏈,開拓在醫療、運動器材、ICT、民生、汽車等產業之高值化產品。預估將促進相關產業產值達新台達幣1億元,影響產值達5億元以上。

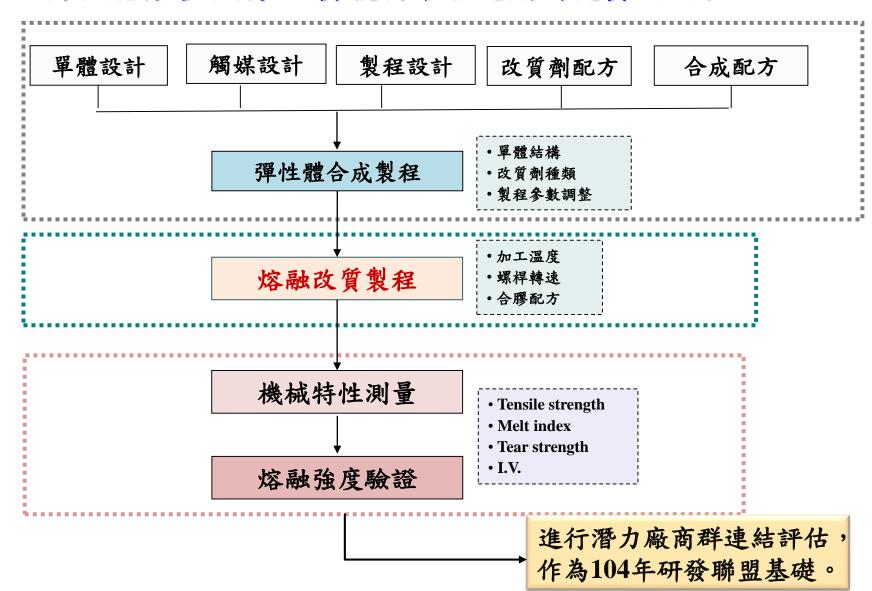
平台技術目標

主題:技術應用推動平台-高性能橡膠合成/改質技術平台先期研究

計畫目標

- □本計畫由合成端出發,藉由單體設計與合成熔融強度改質,開發高結晶速率/高熔融 強度熱塑彈性體,再經由合膠混練改質TPU,增加其融熔強度與減少自身氫鍵,開發 可應用於醫療級薄膜、耐溫發泡與線材用熱塑性彈性體產品,並使用發泡製程驗證其 後加工特性,技術內容包含:單體設計、觸媒配方與製程調控、合膠混練改質、熔融 強度應用驗證等四大部分。
- ➡進行潛力中堅企業廠商群連結諮詢服務評估,以為104年研發聯盟基礎。

指標:


- ■熱塑性彈性體I.V.≥1.2
- ■熱塑性彈性體Tensile strength ≥ 160 kgf/cm²
- ■熱塑性彈性體熔融黏度MI (230°C/2.16kg) ≦ 5 g/10min
- ■熱塑性彈性體熔點 ≥ 200 °C
- ■熱塑性彈性體 Tear strength ≥ 100 kgf/cm
- ■熱塑性彈性體微孔隙化材料之密度驗證 ≦ 0.2 g/cm³

103年度計畫工作規劃

□高性能橡膠合成/改質技術平台先期研究實施流程

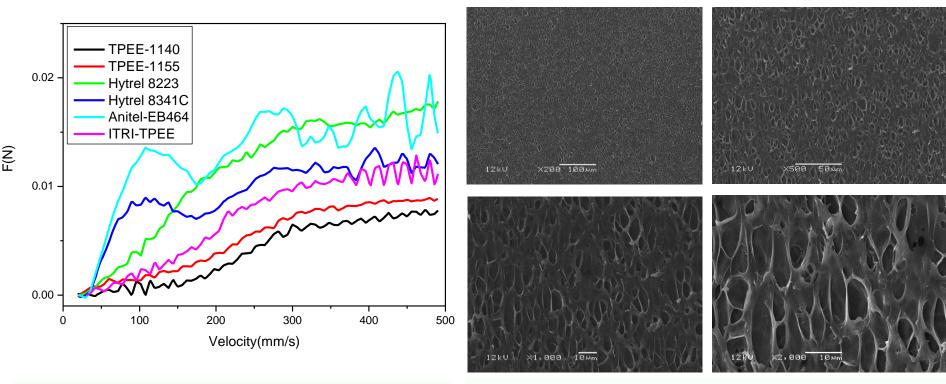
ITRI橡膠彈性體合成設計與特性

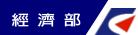
	ITRI-1	ITRI-2	ITRI-3	ITRI-4
對苯二甲酸二甲酯 (g)	291	291	194	194
乙二醇 (g)	186	186		
1,4丁二醇 (g)			180	180
聚四亞甲基醚二醇(g)	217	217	166	166
觸媒A (phr)	0.025	0.025	0.025	0.025
觸媒B (phr)	0.02	0.02	0.02	0.02
高分子添加劑(phr)		0.3		0.3
拉伸強度(kgf/cm²)	277	260	309	263
拉伸率 (%)	635	532	792	727
硬度 (Shore D)	48	46	47	47
熔融指數 (2.16kg@230℃)	>100	0.7	37.37	7.45
結晶溫度 (°C)	148.5	166.6	144.0	153.3
熔點 (℃)	221.7	221.2	193.8	193.2
I.V.	1.07	1.57	1.35	1.62

⇒透過單體/添加劑設計與製程調整,合成高結晶速率/高熔融強度橡膠彈性體。

ITRI合成橡膠彈性體與國內外商品特性比較

	長春- 1140	Dupont- 8223	Dupont- 8341C	DSM- EB-464	ITRI-2	ITRI-4
Tensile strength (kgf/cm ²)	210	243	237	251	260	263
Elongation (%)	779	776	732	854	532	727
Shore D	44	37	39	38	46	47
M.I.	20	0.6	1	<1	0.7	7.45
結晶溫度(℃)	149.6	149.5	159.2	166.5	166.6	153.3
熔點 (℃)	209.4	194.4	208.4	203.4	221.2	193.2


⇒ITRI合成高結晶速率/高熔融強度橡膠彈性體機械性質已接近國外Dupont 與DSM相關商品


103年重要成果說明

國內外橡膠彈性體熔融強度比較

⇒ 由熔融強度分析結果推出ITRI所合成 橡膠彈性體之熔融強度已接近國外彈 性體(Dupont 8341C)。

⇒ITRI所合成橡膠彈性體合膠由物理發泡 製程可製得密度為0.2g/cm3熱塑性彈性體 之微孔隙化材料

ID

計畫目標效益

⇒高性能橡膠合成/改質技術平台先期研究技術產業效益

■透過高性能橡膠合成/改質技術平台,以建立差異化/獨特性等特色之石化高分子樹脂產業價值鏈,開拓在醫療、ICT、民生、汽車等產業之高值化產品。預估將促進相關產業產值達新台幣1億元以上,而其影響產值達5億元以上。

市場關連性	項目	2013年	2014~2015年
產品直接效益	-高熔融強度熱塑性彈性體 -彈性體薄膜產品 -微孔隙彈性體產品	國內尚無此材料系統產業以進口材料為主	>3億元 >1.5億元 >1.5億元

醫療級薄膜

發泡彈性體

彈性體押出件

熱熔膠

結論與建議

- ·透過單體/添加劑設計,已完成高熔融強度熱塑性橡膠彈性體 合成改質先期技術探討,並建立相關特性分析鑑定平台系統, 應用於發泡製程驗證其後加工特性。
- ·未來將透過產業聯盟方式,將所開發之技術與相關廠商合作, 實現技術商品化目標,並透過上下游產業串聯,建立相關產 品供應鏈

